On Unramified Morphisms of Affine Varieties into Simply Connected Non-singular Affine Varieties
نویسنده
چکیده
The Jacobian Conjecture is the following : If φ ∈ Endk(Ank ) with a field k of characteristic zero is unramified, then φ is an automorphism. In this paper, This conjecture is proved affirmatively in the abstract way instead of treating variables in a polynomial ring. Let k be an algebraically closed field, let Ak = Max(k[X1, . . . , Xn]) be an affine space of dimension n over k and let f : Ak −→ A n k be a morphism of affine spaces over k of dimension n. Then f is given by A n k ∋ (x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) ∈ A n k . where fi(X1, . . . , Xn) ∈ k[X1, . . . , Xn]. If f has an inverse morphism, then the Jacobian det(∂fi/∂Xj) is a nonzero constant. This follows from the easy chain rule. The Jacobian Conjecture asserts the converse. If k is of characteristic p > 0 and f(X) = X +X, then df/dX = f (X) = 1 but X can not be expressed as a polynomial in f . Thus we must assume the characteristic of k is zero. The algebraic form of the Jacobian Conjecture is the following : 2000 Mathematics Subject Classification : Primary 13B25, Secondary 13M10
منابع مشابه
Connected Components of Affine Deligne-lusztig Varieties in Mixed Characteristic
We determine the set of connected components of minuscule affine Deligne-Lusztig varieties for special maximal compact subgroups of unramified connected reductive groups. Partial results are also obtained for non-minuscule closed affine Deligne-Lusztig varieties. We consider both the function field case and its analog in mixed characteristic. In particular, we determine the set of connected com...
متن کاملIntroduction to projective varieties
0. Algebraic background 1. Projective sets and their ideals; Weak Nullstellensatz 2. Irreducible components 3. Hilbert polynomial. Nullstellensatz 4. Graded modules; resolutions and primary decomposition 5. Dimension, degree and arithmetic genus 6. Product of varieties 7. Regular maps 8. Properties of morphisms 9. Resolutions and dimension 10. Ruled varieties 11. Tangent spaces and cones; smoot...
متن کاملSmooth and palindromic Schubert varieties in affine Grassmannians
We completely determine the smooth and palindromic Schubert varieties in affine Grassmannians, in all Lie types. We show that an affine Schubert variety is smooth if and only if it is a closed parabolic orbit. In particular, there are only finitely many smooth affine Schubert varieties in a given Lie type. An affine Schubert variety is palindromic if and only if it is a closed parabolic orbit, ...
متن کاملSome Basic Results on Actions of Non-affine Algebraic Groups
We study actions of connected algebraic groups on normal algebraic varieties, and show how to reduce them to actions of affine subgroups. This yields a structure theorem for normal equivariant embeddings of semi-abelian varieties, and a characteristic-free version of the Borel–Remmert theorem.
متن کاملConnected Components of Closed Affine Deligne-lusztig Varieties
We determine the set of connected components of closed affine Deligne-Lusztig varieties for special maximal compact subgroups of split connected reductive groups. We show that there is a transitive group action on this set. Thus such an affine Deligne-Lusztig variety has isolated points if and only if its dimension is 0. We also obtain a description of the set of these varieties that are zero-d...
متن کامل